
Working Papers
Arbeitsberichte

How to Correctly Simulate
Memory Allocation Behavior of

Applications by Calibrating Main
Memory Stubs

Peter Trapp, Markus Meyer and
Christian Facchi

How to Correctly Simulate Memory Allocation
Behavior of Applications by Calibrating Main

Memory Stubs

Peter Trapp, Markus Meyer, and Christian Facchi
University of Applied Sciences Ingolstadt

Ingolstadt, Germany
{trapp,meyerma,facchi}@haw-ingolstadt.de

March 2011

Abstract

Dynamic performance stubs provide a framework to simulate the
performance behavior of software modules and functions. Hence,
they can be used as an extension to software performance engineering
methodologies. The methodology of dynamic performance stubs tar-
gets to gain oriented performance improvement. Other applications
include the identification of “hidden” bottlenecks and the prioriti-
zation of optimization alternatives. Main memory stubs have been
developed to extend the simulation possibilities of the dynamic per-
formance stubs framework. They are able to simulate the heap and
stack behavior of software modules or functions. This paper extends
and improves the simulation algorithm to be able to simulate constant
stack values. Moreover, it presents calibration possibilities to improve
the simulation results by determining the various overhead in the al-
gorithm. The results are furthermore used to compensate inaccuracies
in the simulation. Additionally, a proof of concept is given as valida-
tion of the results. This paper shows that, main memory stubs can
be used to simulate the heap, stack and timing behavior exactly when
considering the parameters determined by the calibration functions.

Keywords:Memory Systems; Software Performance, Evaluation and Testing;
Modeling; Performance Optimization, Bounds, and Models; Case Studies

1

1 Introduction

Dynamic performance stubs have been introduced in [1]. They can be used
for the detection of “hidden” bottlenecks. By demonstrating the optimization
potential of the detected bottleneck a cost-benefit analysis can be performed,
leading to a gain-oriented approach to performance optimizations.

In the past, performance increases in many system architectures have
been achieved by higher CPU speeds, and more recently, by using multiple
cores. Yet, the memory speed and, hence, the memory access times, did not
increase to the same order as the CPUs frequencies. This has lead to a situ-
ation in which many systems are heavily memory bound and, consequently,
software performance optimization studies are often targeting an improve-
ment of the memory usage. The methodology of dynamic performance stubs
can be used to optimize these memory bound systems by using main memory
stubs.

1.1 Dynamic Performance Stubs

The idea behind dynamic performance stubs is a combination of performance
improvements [2–4] in already existing modules or functions and the stub-
bing mechanism from software testing [5,6]. The performance behavior of the
component under study (CUS) will be determined and replaced by a dynamic
performance stub. This stub can be parameterized to simulate different per-
formance behaviors. Typically, the CUS is the part of the software under
test (SUT) that has been identified as a potential performance bottleneck.
The optimization expert can use dynamic performance stubs to analyze the
performance of the SUT. This procedure relates to stubbing a single software
unit. Hence, it will be called “local”. Therefore, a “local stub” has to be
built. The dynamic performance stub can also be used to change the be-
havior of the complete system. A software module has to be created, which
interacts “globally” in the sense of influencing the whole system instead of a
single software component. This stub will be called a “global stub”.

Figure 1 sketches the design and the interaction between a real system on
the left and the dynamic performance stubs on the right side. The unfilled
arrowhead indicates a replacement. Filled arrowheads describe the exten-
sion of a unit by this feature and the dashed block provides an additional
functionality to the dynamic performance stub and will not really replace a
software unit. In the context of dynamic performance stubs, the system under
test is a software module or function, which includes a software performance
bottleneck.

The framework of the dynamic performance stub consists of the following

2

system

software
component
(SUT)

bottleneck
(CUS)

dynamic perfor
mance stub (local)

performance simu
lation functions

(PSF)

simulated
software

functionality (SSF)

performance measure
ment functions (PMF)

calibration
functions (CF)

dynamic perfor
mance stub (global)

Figure 1: Interactions of “Dynamic Performance Stubs”

parts, which is presented in Figure 1:
Simulated Software Functionality (SSF). The simulated software

functionality is used to simulate the functional behavior of a component
under study or a software performance bottleneck. This can be achieved by
generating valid output values for dedicated input values without executing
the original functionality. Another possibility is to simulate different states of
objects inside of the component under study. Hence, the application can be
executed without the original functionality as it is realized by the simulated
software functionality.

Performance Simulation Functions (PSF). Perfor-
mance simulation functions provide the ability to simulate the performance
behavior of the replaced CUS, and are divided into four categories: “CPU”,
“Memory”, “I/O” and “Network”.

Furthermore, memory PSF will be subdivided into the cache memory
PSF and main memory PSF respectively their according stubs, i.e., cache
memory - and main memory stubs.

Performance Measurement Functions (PMF). To provide a basic
set of evaluation possibilities the performance measurement functions can
be used. They are mainly wrapper functions for the measurement functions
already provided by the system.

Calibration Functions (CF). In order to provide trustworthy results,
the stubs have to be adjusted to a dedicated system. This can be done using
the calibration functions.

For more detailed information on dynamic performance stubs the reader
is referred to [1]. A short introduction to CPU stubs and memory stubs is
given below.

3

CPU Stubs. CPU stubs are targeting to handle CPU bound systems.
Therefore, a general approach to parameterize the runtime behavior and
CPU usage has been achieved as well as a possible realization has been im-
plemented. The methodology of CPU stubs has been used to improve the
performance behavior of a long term evolution (LTE) telecommunication
software. Furthermore, the applicability of CPU stubs has been extended to
support multi-core and parallel processing applications in [7].

Cache Memory Stubs. The cache memory stubs can be used to sim-
ulate the data cache access behavior of software modules or functions to
improve suspected memory bottlenecks. The algorithm, a validation as well
as an evaluation by means of a proof of concept for cache memory stubs have
been published in [8]1.

Main Memory Stubs. Main memory stubs simulate the stack and
heap behavior of software modules or functions. They are an extension of
the dynamic performance stubs framework to simulate the main memory
behavior to achieve a cost-benefit oriented optimization. They are defined
in [9].

1.2 Content of the Paper

The first part of this paper enhances the algorithm to simulate the memory
behavior of an application, known from [9]. A closer view on the design
and the execution of the algorithm is shown. An extension of the algorithm
to recreate situations where the amount of allocated stack memory remains
constant is introduced.

Second, in [9], there are some imperfections with the simulation of the
time and memory allocation behavior. This paper extends the concept of
main memory stubs by evaluating calibration functions. These can be used
to adjust the main memory stubs to the system. This highly improves the
simulation results for the “heap”, “stack” and “timing” behavior. Addition-
ally, a proof of concept is given.

2 Main Memory Stubs

Main memory stubs are used to simulate the main memory performance
behavior of a component under study in the context of dynamic performance
stubs.

1Cache memory stubs are referred to this in the earlier publication as memory stubs.

4

2.1 Methodology

To simulate the main memory behavior of applications the following steps
have to be done. First, a main memory performance bottleneck has to be
identified. Now, the bottleneck has to be evaluated, especially, the functional
as well as the main memory behavior have to be determined. Afterwards, the
functional behavior has to be rebuilt using the simulated software function-
ality. Moreover, the main memory performance simulation functions have to
be recreated. This leads to a main memory stub.

Now, the memory behavior of the stub can be changed according to the
needs of the performance study. Hence, several possible optimization levels
as well as their influences to the system can be simulated. Moreover, studying
the results can identify “hidden” bottlenecks, e.g., the timing behavior of a
related software function can change because of the main memory stub. So,
possible results of an optimization can be simulated before the optimization
has to been done.

2.2 Performance Simulation Functions

In [9], performance simulation functions to simulate the main memory al-
location of a SUT have been introduced. In this section, the algorithm is
briefly presented.

Figure 2 shows the design of the memory simulation algorithm. The re-
cursive function, needed to simulate the stack behavior, is called “allocate()”.
This function is called when the amount of stack is increasing.

allocate()

allocate stack

(re-)allocate heap

while(…)

time delay

(re-)allocate heap

time delay

represents trace point x

-stack is increasing

-heap may change

-time is delayed

-decide wether stack

increases or decreases

at the next trace point

stack <=0

represents trace point x+1

-stack will decrease by

previous allocated value

when leaving recursion

-heap & time are simulated

stack > 0

I

II

III

g
o
to

n
e

x
t

tr
a
c
e

p
o
in

t

Figure 2: Memory Simulation Algorithm

5

Simulate Stack Allocation. In the first part of the algorithm (Part I
in Figure 2), the time will be delayed as requested by the data set. Then,
the stack memory is allocated by calling the alloca()-function and used with
the distmemset()-function (see also [9]).

Next Trace Point. In the second part (Part II), the algorithm decides
whether the stack is increasing or decreasing at the following trace point. It
will again reach Part I if the stack is increasing. If the stack is shrinking, the
recursion has to be left, which is realized in Part III.

Simulate Stack Deallocation. This is achieved in the third part (Part
III). The time delay is simulated and the stack memory is automatically freed
when leaving the allocate()-function.

After having left the allocate()-function, the algorithm is either back in
the previous function, which initially called the allocate()-function, or it is in
Part II and the while(...) condition proves once more if the amount of stack
is increasing at the next trace point. This construction is needed to simulate
a sequence of rising and trailing edges.

Simulate Heap (De-)Allocation. The heap memory can be de- as well
as allocated in Part I and III. As it can increase and shrink at this points
nothing special has be to considered.

2.3 Simulation Data File

To reduce the overhead created when running the algorithm, the measuring
points used to simulate are written into a data structure within a header file
that is used to compile the algorithm.

1#define NUMDATA 4
2

3struct memAlloc{
4int time ;
5int s t a ckA l l o c ;
6int heapAlloc ;
7} memUse [NUMDATA]={
8[0] . time =129 , [0] . s t a ckA l l o c =300 , [0] . heapAlloc =0,
9[1] . time =223 , [1] . s t a ckA l l o c =100 , [1] . heapAlloc =200 ,
10[2] . time =384 , [2] . s t a ckA l l o c =−100, [2] . heapAlloc=−40,
11[3] . time =112 , [3] . s t a ckA l l o c =−300, [3] . heapAlloc=−160
12}

Listing 1: Example for a Simulation Data File

6

Listing 1 shows an example header file that can be used to build the sim-
ulation algorithm. For each measuring point, the data structure “memAlloc”
contains the time elapsed since the previous point. Additionally, the change
of heap as well as stack memory are contained. Every point is presented by
one “memAlloc” struct. Those structs are inserted into an array of “NUM-
DATA” length. So the algorithm can easily switch to the next trace point
and does not produce much overhead in execution time.

3 Improvement of the Algorithm

The algorithm presented has several drawbacks and insufficiencies which are
addressed and improved in this section.

Insufficiency of the Algorithm. When taking a closer view to the
algorithm, it becomes clear that the algorithm can not be used to simulate
situations where the allocated amount of stack memory remains constant.
The algorithm is designed to handle stack values not equal to zero. The
implementation of the algorithm shown in [9] would interpret a constant stack
value as a decrease. For that reason, it would leave the recursion and, so,
free the amount of stack that was previously allocated. This behavior of the
algorithm is insufficient to simulate the memory behavior of the component
under test as exact as possible. Therefore, an adjustment of the algorithm is
presented in this paper.

Improvement. In order to simulate situations in which the time pro-
ceeds and the amount of heap memory changes but the stack memory remains
constant additional code has been developed.

1i n l i n e int constantStack (char∗∗ mHeap , int x , long int
pages i ze , long int to ta lheap){

2while (x+1<NUMDATA && memUse [x +1] . s t a ckA l l o c==0){
3x++;
4us l e ep (memUse [x] . time) ;
5∗mHeap=al locateHeap (∗mHeap , x , pages i ze , to ta lheap)

;
6}
7return x ;
8}

Listing 2: Simulation of constant stack situations

Listing 2 shows a possible implementation to simulate trace points, where
the allocated amount of stack does not change. This function checks whether

7

the next trace point has a constant stack value (Line 2). If it does, it increases
the number of the trace point, represented by “x”, delays the time as desired
and calls the allocateHeap()-function to simulate the heap behavior for this
trace point (Lines 3-5). The value of stack is not changed. This sequence is
repeated as long as the stack remains constant.

With help of this function, the algorithm can easily be adjusted. The
possible situations, where a constant stack behavior can occur are:

• Between two rising edges

• Between a rising and a trailing edge

• Between two trailing edges

• Between a trailing and a rising edge

To cover all situations, the function has to be called on several position
within the algorithm. The function has to check for the constant stack value
after every rising edge as well as after every trailing edge.

1int a l l o c a t e (char∗∗ mHeap , int x , long int page s i z e) {
2char∗ mStack = NULL;
3us l e ep (memUse [x] . time) ;
4i f (memUse [x] . s t a ckA l l o c > 0) {
5mStack = (char∗) a l l o c a (memUse [x] . s t a ckA l l o c) ;
6distmemset (mStack , ’ a ’ , memUse [x] . s tackAl loc ,

pages i ze , t o t a l s t a c k) ;
7}
8∗mHeap=al locateHeap (∗mHeap , x , page s i z e) ;
9x=constantStack (mHeap , x , page s i z e) ;
10while (x+1<NUMDATA && memUse [x +1] . s tackAl loc >0){
11x=a l l o c a t e (mHeap , x+1, page s i z e) ;
12x=constantStack (mHeap , x , pages i ze , to ta lheap) ;
13}
14x++;
15us l e ep (memUse [x] . time) ;
16∗mHeap=al locateHeap (∗mHeap , x , pages i ze , to ta lheap) ;
17return x ;
18}

Listing 3: Improved implementation of the algorithm

8

Listing 3 shows the final implementation of the improved algorithm
to simulate the memory behavior of the component under test. The
constantStack()-function is placed after the rising edge (Line 9) on the one
hand and after the end of a recursive call of the allocate()-function that is
reached when the stack memory is decreased (Line 12). Additionally, the
distmemset()-function has been adjusted to only use the newly allocated
memory. This is achieved by passing the total memory size to the function.

Through these improvements of the algorithm, the simulation of the mem-
ory behavior has been adjusted. Because of this, situations in which the stack
memory remains constant can now be simulated as well as the overhead in
the distmemset()-function is reduced.

4 Calibration Functions

This section presents the evaluation of different overhead values, which are
caused by executing the performance simulation functions as in Section 2.
After the calculation, the results can be used to improve the main memory
simulation algorithm. In the context of dynamic performance stubs, they are
referred as calibration functions.

4.1 Measurement Tools

The test environment is based on a Linux operating system (see also Section
5). Hence, measurement tools, which can be used in most Linux systems, are
described here. They are used to gather the information to determine the
various overhead caused by the main memory simulation algorithm. In this
section, the tools used for the calibration functions are presented shortly.

Allocated Heap Memory. To measure the behavior of the heap mem-
ory the “mallinfo” structure provided by the malloc.h header-file is used.
This structure delivers several aspects about heap memory allocation such
as the memory area, used and free amount of heap memory within the area.
The mallinfo struct is read by calling the mallinfo()-function that is also part
of the malloc.h header-file.

Allocated Stack Memory. The size of the allocated stack memory
is measured by reading the base and stack pointer of the running process.
Their difference represents the actual amount of stack allocated by the com-
ponent under test. To read their values with the least overhead, some inline
assembler code have been used.

Time. The measured values for allocated stack and heap memory have
to be put in a chronological sequence. For that reason, the time has also

9

to be measured when picking heap and stack values. Within this paper, the
real time clock (RTC) of the system is used.

4.2 Overhead Determination

This section presents a possibility to determine the three types of over-
head, which are generated by the simulation algorithm: “time”, “heap” and
“stack”.

4.2.1 Time Overhead

When simulating the memory behavior of the component under study the
simulation time has to be almost same as the original runtime. But, there
are several reasons why the execution time takes longer.

Reasons for Time Overhead. There are mainly five reasons for the
time overhead produced by the algorithm:

• The execution time of the algorithm without any memory allocation

• The allocation of heap memory

• The use of the allocated heap memory

• The allocation of stack memory

• The use of the allocated stack memory

Running the algorithm consumes time, even if no memory is allocated. This
basic time overhead is produced by the algorithm. When allocating heap
memory the runtime of the algorithm will increase because of the time that
is needed by the realloc()-function. Additionally, the use of the allocated
heap memory by the distmemset()-function also takes some time. The same
behavior can be regarded when the stack memory is allocated. The alloca()-
function and the use of distmemset()-function produces additional time over-
head.

Measurement. To measure the total time overhead (timeoverhead) for
the algorithm several independent measurements have to be done in order
to cover all above mentioned cases. For each case, a simulation data file, to
simulate the particular situation, is used.

Basic Execution Time. First of all, the evaluation of the basic ex-
ecution time (timebasic) of the algorithm when no memory is allocated is
performed. This is done by running the complete algorithm. To cover the
complete algorithm a minimum stack allocation value of 1 byte is used. As

10

the heap should not be regarded within the timebasic a value of 0 is applied.
The time delay between two trace points is also set to 0 to measure the time
consumption of the algorithm.

Measuring the basic time overhead for the algorithm shows a constant
offset value for each run. This value is produced by running the algorithm’s
code. Therefore, it has to be considered as the minimum time resolution that
can be simulated by the algorithm. But, because of the other time overhead,
e.g., produced by the allocation and use of the memory, this resolution can
hardly be achieved.

Time Overhead Caused by Heap Allocation. The time overhead
produced by the allocation of the heap memory (timeheap) is caused by the
allocation itself and the use of the memory by the distmemset()-function.
To evaluate this overhead, both parts of the overhead has to be measured
separately. These measurements use an identical trace file to simulate heap
allocation. The time delay is set to 0 and for stack allocation 1 byte is used
at every trace point. This is done to run through the complete algorithm.
The amount of allocated heap memory increases at each trace point.

To determine the time used for allocating and using the memory (timeallocheap

and timeuseheap) the time before and after the function call is measured as
described above. Now, the “after” time is subtracted from the “before” time
to evaluate the time delta.

Measuring the time overhead produced by the heap memory allocation
highly depends on the architecture and the implementation of the used allo-
cation function as described in [10]. For example, the change of the allocation
options within the system influences the number of page faults produced and
the way allocated memory is freed within the simulation.

Time Overhead Caused by Stack Allocation. To evaluate the time
overhead that occurs when allocating stack memory (timestack) the same
measurements as shown within the heap allocation have to be done. There
are two measurements, one to determine the time used to allocate the memory
(timeallocstack) and another to measure the time to use the allocated memory
(timeusestack). The delay of the stack allocation is determined according to the
heap allocation.

The only difference is the simulation data file that is used for the mea-
surement. The time delay is set to 0 also in this calibration function. But,
there should be no heap memory allocation. Hence, its value is set to 0,
too. The amount of allocated stack memory is increasing throughout the
simulation data file.

With these two measurements the timing behavior of the stack memory
allocation can be determined. This again, strongly depends on hardware and
implementation of the system.

11

Time Overhead in Total. In the previous paragraphs, a possibility
to determine the various parts of the time overhead has been shown. These
times have to be measured separately as different settings for the simulated
memory and times have to be used. To get the total amount of time overhead,
those parts have to be combined.

timeoverhead(heap, stack) = timebasic+

timeheap(heap) + timestack(stack) (1)

timeheap(heap) = timeallocheap(heap) + timeuseheap(heap) (2)

timestack(stack) = timeallocstack(stack) + timeusestack(stack) (3)

This is presented in Equations 1 - 3. “Heap” and “stack” denotes the amount
of bytes, which will be allocated/used.

4.2.2 Byte Overhead

The execution of the simulation algorithm uses a certain amount of memory.
Therefore, the overhead for allocated heap and stack memory have to be
measured.

Heap Overhead. To measure the heap memory overhead (heapoverhead),
created by the running algorithm, a specific simulation data file with increas-
ing heap memory allocation is used. The time delay is not relevant here and
thus set to zero. The amount of allocated stack memory is set to 1 byte in
order to execute the complete algorithm.

The measurement results show, that using the algorithm as described in
Section 2 creates only a small overhead in allocated heap memory.

Stack Overhead. As done for the heap memory, the overhead of the
allocated stack memory has to be determined, too.

The overhead regarding stack memory that occurs when executing the
algorithm is mainly caused by two reasons. On the one hand, there are local
variables used to initially set up the simulation. They are located on the
stack and thus produce a certain amount of allocated stack memory. This is
called (stackoffset). On the other hand, every function call of the allocate()-
function increases the allocated stack memory. This is called (stackoverhead).
This is an important aspect, due to the recursive simulation algorithm, which
produces several function calls depending on the simulation data points.

Measuring the stack memory overhead, both stackoffset and stackoverhead,
can be done by using a trace file that increases the amount of allocated
stack continuously. Time and heap values are not considered within this
measurement. To estimate the influence of the recursive function calls, the
stack memory is allocated several times in a row before freeing it again.

12

The different measurements show that the amount of additional stack
memory allocated by the algorithm (stackoverhead) is constant for every call
of the allocate()-function and, therefore, for its recursive call as well.

5 Proof of Concept

In the previous sections an algorithm to simulate a program’s memory be-
havior has been presented and the calibration functions have been intro-
duced. Now, both will be validated and evaluated within this proof of con-
cept. Therefore, a defined sample for the input data is used to cover a broad
variety of possible memory behaviors.

5.1 Experimental Setup

This proof of concept is used evaluate to the impact of the calibration func-
tions as well as the enhanced main memory allocation algorithm.

Environment. All measurements were performed on a FSC Amilo
Si3655 Notebook with an Intel Core(TM)2 Duo P8400 CPU (Intel 64 ar-
chitecture). As operating system Arch Linux is used. Its kernel version is
2.6.34. The binary has been build using the gnu compiler collection (gcc)
without any optimization flags to guarantee that the option “-O0” has been
used. Beside of running the proof of concept, the system has been idle to
avoid further influences on the execution time.

Measurement Tools. To offer the possibility to evaluate the simulated
behavior of the memory allocation a very precise way to measure the stack
and heap allocation has to be used.

For this reason, the value of allocated stack memory is measured by inline
assembler calls to read the stack pointer (esp) and base pointer (ebp) regis-
ters. The value of ebp is taken at the beginning of the simulation to get a
base value for the stack allocation. During the simulation the esp register has
been read at every measuring point. So the offset between the starting ebp
and the actual esp gives the actual total amount of allocated stack memory.

To measure the value of allocated heap memory, the mallinfo structure
of the malloc.h header-file is read. This structure contains all the desired
information about the heap memory for this process.

The measured data has to be associated with the time spent in the system.
Because of this, at every measuring point a time stamp is taken using an inline
assembler to read the real time clock of the system [11].

13

5.2 Calibration Function

To determine the time, heap and stack allocation offset, created by execut-
ing the simulation, the calibration functions as presented in Section 4 are
used. The values for those offset depends on the system’s implementation.
Hence, the calibration has to be repeated when changing any of the system’s
parameters. As described in Section 4, different simulation data files have to
be used to measure the various offset values of the algorithm.

Time Overhead. The measurement of the basic time offset has shown
to be constant in our setup. It is determined to timebasic = 126775cycles
with an squared coefficient of variation (see also [12]) of 0.009, calculated for
100 test evaluations.

Within this proof of concept, the time consumed by allocating stack and
heap memory has been identified. The evaluation of the measurements, that
were described in Section 4, leads to following results for the heap and stack
allocation (y describes the previously allocated total memory size in the
memory segment and x the newly allocated memory in bytes).

Equation 4 is used to calculate the number of page faults at a certain
memory allocation value.

pagefaults(x, y) =

⌊
(y%pagesize) + x

pagesize

⌋
(4)

The number of bytes, which did not cause a page fault is calculated
(y%pagesize). The result plus the newly allocated memory (x) is devided by
the pagesize to determine the amount of page faults for the new allocation.
The result is passed to the floor function as page faults can only be a natural
number. Pagesize denotes the system page size in bytes.

Time Influence of the Heap Simulation. The heap memory will only be
reallocated. Hence, the memory value (x) is always greater or equal zero.

As can be seen in Equation 5, the time spent for allocating memory
heavily depends on whether a page fault is raised in the allocation function
or not. Additionally, there is only one page fault in the allocation function
even if more than one page is allocated.

timeallocheap(x, y) =

{
3722cycles pagefaults(x, y) > 0

94cycles pagefaults(x, y) = 0
(5)

timeuseheap(x, y) = 69cycles ∗ (pagefaults(x, y) + 1)+

3252cycles ∗

{
pagefaults(x, y)− 1 pagefaults(x, y) > 1

0 pagefaults(x, y) = 0
(6)

14

In Equation 6, the time spent in the distmemset()-function is calculated.
The equation consists of two parts. First, the time spent iterating over the
memory block, i.e., 69cycles∗ (pagefaults(x, y)+1) and, second, the number
of page faults occurred in the function minus one as one page fault appeared
within the allocation function (see also Equation 5).

Time Influence of the Stack Simulation. For both times, i.e., timeallocstack(x)
and timeusestack(x), the algorithm does not take significant time to free the
stack memory (x ≤ 0). Additionally, the “freed” memory will not be used,
obviously. Hence, both values are set to zero cycles. In the other case, the
time needed to allocate and use the new memory can be calculated by using
Equations 7 and 8.

timeallocstack(x) = 48cycles (7)

timeusestack(x, y) = 61cycles+

3358cycles ∗ pagefaults(x, y) (8)

The time to allocate stack memory (Equation 7) is constant as only the base-
and stack pointer have to be adjusted [9].

The time spent in the distmemset()-function to initialize the stack mem-
ory (Equation 8) is the same as in Equation 6. The only difference is that
the stack allocate function does not raise a page fault.

All the described equations were found by determining the average time
stamps of several runs in our test setup and describe the time behavior of
allocating and using the heap and stack memory in sufficient accuracy.

When not allocating any heap and/or stack memory at a trace point, the
respective times are set to 0. In those cases, they do not have any influence
on the calculation of the total time overhead for each measuring point. The
equation used to determine the total time overhead timeoverhead(heap, stack)
is described in Section 4.

Heap and Stack Overhead. As stated in Section 4, the heap offset
that is introduced when executing the algorithm has to be determined. The
measurements showed that heapoverhead is constant at 32 bytes, if there is no
heap memory allocated within the simulation. If there is any heap memory
allocated during the simulation, the heap overhead rises to 40 bytes and also
remains constant while the memory is allocated.

Measuring with the given calibration trace file results in a constant in-
crease of allocated stack per trace point. So, the call of the allocation function
allocates a constant amount of stack memory. Because of this measurement,
the stack offset is determined to stackoffset = 216 bytes as well as to

15

stackoverhead(x) =

64bytes x > 0

0bytes x = 0

−64bytes x < 0

.

As these bytes overhead are constant for each execution, there is no need
for an statistical interpretation.

The values for stack, heap and time overhead is used to produce a simula-
tion data file. This allows the simulation algorithm to perform a simulation
that fit as exact as possible to the desired behavior of memory allocation.

5.3 Measurement and Evaluation

After the measurements of the calibration functions, all necessary data for
the simulation of the memory behavior is available. The same input data
as in [9] has been used and the time, heap and stack overhead has been
determined via the calibration functions.

Simulation Data File. As the first step in simulating the memory
behavior of a system, a valid simulation data file has to be generated. With
the input data and the overhead for time delay, heap and stack allocation, the
needed trace points are calculated. The output is presented as a header file,
see Section 2.3, containing the data set used within the simulation algorithm.

Measurement. After creating a valid header file, an executable of the
simulation algorithm can be build.

4000

6000

8000

10000

12000
memory [bytes]

stack input data

heap input data

stack simulated data

heap simulated data

0

2000

4000

6000

8000

10000

12000

0 1000000 2000000 3000000 4000000 5000000 6000000

memory [bytes]

time [µs]

stack input data

heap input data

stack simulated data

heap simulated data

Figure 3: Comparison of Original and Simulated Memory Behavior

16

Figure 3 shows the measured stack and heap memory allocation in com-
parison to the desired behavior. The time in microseconds is printed at the
X-axis and the total allocated amount of memory is shown at the Y-axis.
The figure shows the original stack behavior, the measured stack allocation
during the simulation, the original heap allocation and the measured heap
behavior while simulating the memory allocation.

Simulating Execution Time. When comparing the time supposed
by the simulation data file, which is 4.8 seconds, and the execution time
measured in the evaluation, which is 4.8000444 seconds, it can be seen that
the simulation produces only a small amount of time overhead. Here, an
overhead of 9 ∗ 10−3% in total execution time is produced. So, the total
execution time is sufficiently simulated.

Simulating Heap Allocation. The analyses of the heap’s allocation
simulation, as shown in Figure 3, depicts that it is very accurate. There is
nearly no variation to the desired behavior of heap allocation. It is possible
to simulate situations where the heap is rising and falling. Fast switches of
allocating and freeing heap memory are simulated exactly. The simulation
algorithm works absolutely fine for simulating heap memory allocation in our
example.

Simulating Stack Allocation. The results of the simulation of stack
memory allocation behavior also are satisfying. The allocation behavior can
be reproduced exactly. Rising and trailing edges as well as constant amounts
of stack are simulated in a correct way. High peaks and fast changes of
allocated stack are rebuild as desired. Even slow rises of the allocated amount
of stack are simulated quite well.

Summary. The calibration functions that are introduced within this
paper as well as the presented memory simulation algorithm fully meet the
requirements to simulate the memory behavior of a system under test. Both,
heap and stack memory allocation, are simulated with high accuracy and
almost without an overhead in execution time.

6 Conclusion and Future Work

This paper presents an algorithm to simulate the main memory behavior of
applications in the context of dynamic performance stubs. There are two con-
tributions: An extension and improvement of the simulation algorithm and
the determination of the various types of overhead caused by the algorithm,
e.g., time overhead caused by executing the algorithm.

With the improvement of the algorithm, it is now possible to simulate
constant stack behavior. Additionally, calibration functions have been intro-

17

duced to evaluate the overhead values caused by executing the algorithm.
Considering the calibration functions leads to an almost exact simulation of
the main memory behavior. This has been validated with a proof of concept.

The future work will focus on an algorithm to measure the component
under study as well as to generate the simulation data file. Moreover, a
methodology, which applies the main memory stubs in industrial case studies,
has to be defined and evaluated.

It has been shown that the behavior of the stack and heap usage can be
simulated without significant errors. Based on the presented algorithm, a
goal oriented performance optimization regarding the memory behavior of
an arbitrary application can be achieved.

7 Acknowledgments

The authors would like to thank the long term evolution group in Ulm for
the excellent support and contributions to this research project. For careful
reading and providing valuable comments on draft versions of this paper we
would like to thank Helge Janicke. We would also like to thank the Software
Technology Research Laboratory (STRL) from the De Montfort University,
especially Francois Siewe and Hussein Zedan for providing the appropriate
environment for research.

References

[1] P. Trapp and C. Facchi, “Performance Improvement Using Dynamic
Performance Stubs,” Fachhochschule Ingolstadt, Tech. Rep. 14, Aug.
2007.

[2] R. Jain, The art of computer systems performance analysis. Wiley and
sons, Inc., 1991.

[3] N. H. Gunther, The Practical Performance Analyst. McGraw-Hill Ed-
ucation, 1998.

[4] J. J. Marciniak, Encyclopedia of Software Engineering, 2nd ed. John
Wiley & Sons Inc, 2002.

[5] A. Bertolino and E. Marchetti, Software Engineering: The Development
Process - A Brief Essay on Software Testing, 3rd ed. John Wiley &
Sons, Inc., 2005, vol. 1, ch. 7, pp. 393–411.

18

[6] I. Sommerville, Software Engineering, 6th ed. Addison-Wesley, 2001,
german redaction.

[7] P. Trapp, M. Meyer, and C. Facchi, “Using CPU Stubs to Optimize
Parallel Processing Tasks: An Application of Dynamic Performance
Stubs,” in ICSEA ’10: Proceedings of the International Conference on
Software Engineering Advances. IEEE Computer Society, 2010.

[8] P. Trapp, C. Facchi, and S. Bittl, “The Concept of Memory Stubs as
a Specialization of Dynamic Performance Stubs to Simulate Memory
Access Behavior,” in CMG ’09: International Conference Proceedings.
Computer Measurement Group, 2009.

[9] P. Trapp and C. Facchi, “Main Memory Stubs to Simulate Heap and
Stack Memory Behavior,” in CMG ’10: International Conference Pro-
ceedings. Computer Measurement Group, 2010.

[10] P. Ezolt, “A study in malloc: a case of excessive minor faults,” in
ALS ’01: Proceedings of the 5th annual Linux Showcase & Conference.
Berkeley, CA, USA: USENIX Association, 2001, pp. 17–17.

[11] Y. Etsion and D. Feitelson, “Time Stamp Counters Library - Mea-
surements with Nano Seconds Resolution,” The Hebrew University of
Jerusalem, Tech. Rep. 2000-36, 2000.

[12] R. Srinivasan and O. Lubeck, “MonteSim: A Monte Carlo Performance
Model for In-order Microarchitectures,” ACM SIGARCH Computer Ar-
chitectur News, vol. 33, no. 5, pp. 75–80, Dec. 2005.

19

	1 Introduction
	1.1 Dynamic Performance Stubs
	1.2 Content of the Paper

	2 Main Memory Stubs
	2.1 Methodology
	2.2 Performance Simulation Functions
	2.3 Simulation Data File

	3 Improvement of the Algorithm
	4 Calibration Functions
	4.1 Measurement Tools
	4.2 Overhead Determination
	4.2.1 Time Overhead
	4.2.2 Byte Overhead

	5 Proof of Concept
	5.1 Experimental Setup
	5.2 Calibration Function
	5.3 Measurement and Evaluation

	6 Conclusion and Future Work
	7 Acknowledgments

